МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ДЛЯ ДВУХКОМПОНЕНТНОГО ХИМИЧЕСКОГО РЕАКТОРА ТИПА «БРЮССЕЛЯТОР», ОПИСЫВАЕМАЯ СИСТЕМОЙ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Титов В.Л., Лаптинский В.Н.

Могилевский государственный университет продовольствия, Беларусь г. Могилев, Республика Беларусь

Рассматривается математическую модель реакции, протекающей в двухкомпонентном химическом реакторе типа "брюсселятор", описываемая системой обыкновенных дифференциальных уравнений вида

$$\begin{cases} \frac{du_1}{dt} = u_1^2 u_2 - (b+1)u_1 + c + a\sin vt, \\ \frac{du_2}{dt} = bu_1 - u_1^2 u_2. \end{cases}$$

Систему (1) с помощью замены $u_1 = x_1 + c_1$, $u_2 = x_2 + c_2$ приведем к виду

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}(t, \mathbf{x})\mathbf{x} + \mathbf{f}(t), \ \mathbf{x}(0) = \mathbf{x}(\omega),$$

где $A(t, \mathbf{x}) \in \mathbb{C}(D, \mathbb{R}^2)$, $f \in \mathbb{C}(I, \mathbb{R}^2)$, матрица-функция $A(t, \mathbf{x})$, удовлетворяющая условию Липшица по x (локально) в области $D = \{(t, \mathbf{x}) : t \in I, \|\mathbf{x}\| < \infty\}$; $I = [0, \omega]$.

Обозначим
$$\boldsymbol{B}(\omega, \boldsymbol{0}) = \int_{0}^{\omega} \boldsymbol{A}(\tau, \boldsymbol{0}) d\tau$$
.

В случае $\det \boldsymbol{B}(\omega,0) \neq 0$ разработан алгоритм построения этого решения:

$$\boldsymbol{x}_{k+1}(t) = -\boldsymbol{B}^{-1}(\boldsymbol{\omega}, \boldsymbol{0}) \left[\mathbf{E} + \int_{0}^{\boldsymbol{\omega}} \boldsymbol{P}(\tau, \boldsymbol{x}_{k}(\tau)) d\tau \boldsymbol{B}^{-1}(\boldsymbol{\omega}, \boldsymbol{0}) \right]^{-1} \times \left[\sum_{k=1}^{\boldsymbol{\omega}} \boldsymbol{P}(\tau, \boldsymbol{x}_{k}(\tau)) \boldsymbol{\psi}(\tau, \boldsymbol{x}_{k}(\tau), \boldsymbol{x}_{k-1}(\tau)) d\tau + \boldsymbol{\psi}(t, \boldsymbol{x}_{k}(t), \boldsymbol{x}_{k-1}(t)), \quad k = 1, 2, ..., \right]$$

где **E** – единичная матрица, $P(\tau, x_k(\tau)) = A(\tau, x_k(\tau)) - A(\tau, \mathbf{0})$,

$$\begin{split} \boldsymbol{\psi}(t, \boldsymbol{x}_k(t), \boldsymbol{x}_{k-1}(t)) &= \int\limits_0^\omega \boldsymbol{K}(t, \tau) \boldsymbol{\Phi}(\tau, \boldsymbol{x}_k(\tau), \boldsymbol{x}_{k-1}(\tau)) d\tau - \boldsymbol{B}^{-1}(\omega, \boldsymbol{0}) \int\limits_0^\omega \boldsymbol{f}(\tau) \, d\tau \,, \\ \boldsymbol{K}(t, \tau) &= \begin{cases} \boldsymbol{B}^{-1}(\omega, \boldsymbol{0}) \int\limits_0^\tau \boldsymbol{A}(\tau, \boldsymbol{0}) d\tau, & 0 \leq \tau \leq t \leq \omega, \\ & 0 \\ & -\boldsymbol{B}^{-1}(\omega, \boldsymbol{0}) \int\limits_\tau^\omega \boldsymbol{A}(\tau, \boldsymbol{0}) d\tau, & 0 \leq t < \tau \leq \omega, \end{cases} \\ \boldsymbol{\Phi}(\tau, \boldsymbol{x}_k(\tau), \boldsymbol{x}_{k-1}(\tau)) &= \boldsymbol{A}(\tau, \boldsymbol{0}) \boldsymbol{x}_k(\tau) + \left[\boldsymbol{A}(\tau, \boldsymbol{x}_{k-1}(\tau)) - \boldsymbol{A}(\tau, \boldsymbol{0}) \right] \boldsymbol{x}_k(\tau) + \boldsymbol{f}(\tau) \,. \end{split}$$

Изучены вопросы сходимости, скорости сходимости этого алгоритма. Приближенное ω-периодического решение системы (1) имеет вид:

$$x_3(t) = \delta + \frac{a}{v^2} \begin{pmatrix} 1 - b \\ 0 \end{pmatrix} \sin vt - \frac{a}{v} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cos vt,$$

где δ – постоянный вектор, определяемый по исходным данным этой системы.