СЕКЦИЯ 3 «ТЕХНОЛОГИЯ ПРОДУКЦИИ ОБЩЕСТВЕННОГО ПИТАНИЯ И МЯСОПРОДУКТОВ»

УДК 621.396.13:001.891.53

ИССЛЕДОВАНИЕ МОНОСАХАРИДНОГО СОСТАВА КЛЕТОЧНЫХ СТЕНОК ОВОЩЕЙ

Василенко З.В., Пискун Т.И., Березнева Т.В., Смагин А.М. Могилевский государственный университет продовольствия г. Могилев, Беларусь

В общественном питании овощи используют как в свежем виде, так и в виде полуфабрикатов. Кулинарное использование определяется овощей технологическими свойствами: пищевых составом И содержанием веществ, особенностями строения тканей [1].

Доказано, что в результате гидротермической обработки овощей входящие в состав клеточных стенок пектиновые вещества и гемицеллюлозы подвергаются деструкции с образованием растворимых продуктов. С целью более детального исследования процесса деструкции полисахаридного комплекса клеточных стенок моркови и свеклы при нагревании корнеплодов нами изучен моносахаридный состав клеточных стенок в целом и отдельно входящих в их состав полисахаридов: пектиновых веществ и гемицеллюлоз до и после нагревания овощей. Результаты исследований представлены в таблице 1.

Таблица 1 — Состав сахаров, определяемых в клеточных стенках при различных

температурах нагревания моркови и свеклы, %

Температура,	Рамноза	Арабиноза	Галактоза	Ксилоза	Глюкоза	Манноза	Сумма
0 C							
Морковь сырая	1,01	3,87	14,43	0,92	0,99	1,04	22,26
40^{0}	0,97	3,76	14,26	0,89	0,90	1,02	21,8
60^{0}	0,73	3,68	14,47	0,70	0,88	1,00	21,46
80^{0}	0,73	3,45	13,35	0,71	0,86	0,99	20,09
вареная	0,78	3,27	12,58	0,70	0,85	0,96	19,14
Свекла сырая	1,14	9,53	3,79	0,75	1,31	1,72	24,24
40^{0}	1,16	9,38	9,86	0,72	1,30	1,68	24,10
60^{0}	0,98	9,1	9,59	0,65	1,27	1,63	23,1
80^{0}	0,91	8,95	9,23	0,58	1,15	1,50	22,32
вареная	0,84	9,63	9,00	0,56	1,13	1,45	21,61

В составе сахаров клеточных стенок сырых корнеплодов в значительных количествах обнаружены арабиноза и галактоза, манноза. Арабиноза и галактоза в клеточных стенках моркови определены в соотношении 1:3,7, а в клеточных стенках свеклы 1:1,1.

При нагревании корнеплодов сумма сахаров, определяемых в клеточных стенках моркови и свеклы, уменьшается. Это объясняется разрушением при нагревании овощей наиболее лабильной части полисахаридов клеточных стенок с образованием растворимых продуктов, которые переходят в отвар. Установлена пропорциональная зависимость между изменением содержания клеточных стенок в овощах и суммой определяемых в них сахаров.

Состав сахаров, определяемых в пектиновых веществах клеточных стенок моркови и свеклы до и после тепловой обработки корнеплодов представлен в таблице 2.

Таблица 2 — Состав сахаров, определяемых в пектиновых веществах, полученных из клеточных стенок при различных температурах нагрева моркови и свеклы, %

Температура, ⁰ C	Рамноза	Арабиноза	Галактоза	Ксилоза	Глюкоза	Манноза	Сумма
Морковь сырая	1, 10	6,66	11,87	0,76	0,31	0,44	21,14
40^{0}	0,97	6,61	11,79	0,73	0,31	0,41	20,82
60^{0}	0,85	6,4	11,62	0,66	0,30	0,39	20,22
80^{0}	0,83	6,36	11,48	0,58	0,30	0,38	19,93
вареная	0,80	5,96	10,70	0,46	0,32	0,36	18,60
Свекла сырая	1,3	2,87	15,59	0,93	0,88	0,67	22,27
40^{0}	1,29	2,78	15,50	0,90	0,80	0,63	21,90
60^{0}	1,11	2,71	15,00	0,87	0,75	0,61	21,05
80^{0}	0,99	2,65	14,59	0,79	0,70	0,53	20,30
вареная	0,93	2,04	13,00	0,67	0,66	0,55	17,85

Из представленных в таблице 2 данных следует, что доминирующими сахарами в пектиновых веществах, как и в клеточных стенках, являются арабиноза и галактоза. Из других сахаров следует отметить определяемую в значительных количествах рамнозу, которая является обязательным элементом рамногалактуронана.

Другие сахара: ксилоза, глюкоза, манноза в пектиновых веществах определяются в меньших количествах, чем в клеточных стенках, так как они являются основными структурными элементами гемицеллюлоз. По мере повышения температуры нагревания корнеплодов сумма сахаров, определяемых в пектиновых веществах, понижается, что можно объяснить деструкцией лабильных фракций пектиновых веществ и переходом в отвар образующихся при этом растворимых продуктов. Между изменением содержания пектиновых веществ в клеточных стенках корнеплодов при нагревании последних и количеством определяемых в пектиновых веществах сахаров имеется прямая зависимость.

Исследование состава сахаров, определяемых в гемицеллюлозах клеточных стенок моркови и свеклы до и после тепловой обработки корнеплодов показало, что по количественному содержанию основными сахарами гемицеллюлоз являются ксилоза, манноза и глюкоза, в меньших количествах определяются арабиноза и галактоза. Имеется существенное различие в количественном различии состава сахаров, определяемых во фракциях гемицеллюлоз А и Б. Во фракциях гемицеллюлоз Б из клеточных стенок и моркови, и свеклы в значительных количествах определяются глюкоза и манноза и в меньших количествах ксилоза. Наличие глюкозы возможно связано с присутствием во фракции гемицеллюлоз Б лабильной части целлюлозы. Во фракциях гемицеллюлоз А из клеточных стенок свеклы в большем количестве определена ксилоза, а моркови — ксилоза и глюкоза. Возможно, именно повышенное содержание глюканов в моркови определяет большую термостойкость её гемицеллюлоз при тепловой обработке.

Литература

1. Василенко З.В. Технология производства продукции общественного питания. Теоретические основы: учеб. пособие/ З.В.Василенко, О.В. Мацикова, Т.Н. Болашенко – Минск: Вышэйшая школа, 2016. – 299 с.: ил.