ВЛИЯНИЕ БУТИЛОКСИАНИЗОЛА НА УСТОЙЧИВОСТЬ ГОВЯЖЬЕГО ЖИРА ПРИ ВЫСОКОТЕМПЕРАТУРНОМ НАГРЕВЕ

Гредюшко К. Д., Кравцова А.С. Научный руководитель – Смагин А. М., к. т. н., доцент Могилевский государственный университет продовольствия г. Могилев, Республика Беларусь

Цель работы — изучение возможности торможения процесса окисления говяжьего топленого жира при интенсивной термической обработке антиоксидантом бутилоксианизолом (БОА). Говяжий жир выдерживали в термостате при 175 и 200 °С в течение 30 и 60 мин. Удельная поверхность соприкосновения жира с воздухом составляла 7,24 см²/г. Принятые условия в максимальной степени соответствовали режимам обработки кулинарных изделий и блюд в жарочных шкафах и конвекционных печах.

Бутилоксианизол вводили в жир в виде спиртового раствора в количестве 0,02 и 0,04 %. Через установленные промежутки времени в жире определяли содержание первичных и вторичных продуктов окисления: перекисное число – йодометрическим методом, альдегидное число - спектрофотометрическим методом при λ = 430 нм. Эффективность действия БОА определяли по кинетике изменения перекисного и альдегидного чисел.

Результаты исследований представлены в таблице.

Таблица – Изменение перекисного и альдегидного чисел при термической обработке говяжьего жира

	Продолжительность нагревания, мин			
Образцы жира	30	60	30	60
	Перекисное число, % йода		Альдегидное число, Е	
При 175 °C				
- без антиоксиданта	0,232	0,440	0,477	1,020
- с 0,02 % БОА	0,073	0,180	0,200	0,508
- с 0,04 % БОА	0,070	0,152	0,163	0,420
При 200 ℃				
- без антиоксиданта	0,554	0,658	1,095	2,100
- с 0,02 % БОА	0,274	0,623	0,684	1,927
- с 0,04 % БОА	0,231	0,604	0,560	1,790
Примечание – Исхолное перекисное число жира – 0.02 % йода, альдегилное				

Примечание — Исходное перекисное число жира — 0.02% йода, альдегидное число — 0.047.

Полученные результаты свидетельствуют, что бутилоксианизол является эффективным стабилизатором процесса окисления говяжьего жира и в условиях воздействия высоких температур. Увеличение температуры и продолжительности нагревания заметно снижает антиоксидантную активность БОА. Повышение концентрации БОА с 0,02 до 0,04 % практически не влияет на его ингибирующие свойства.