ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК НЕРЕГУЛЯРНОЙ НАСАДКИ

Яцков Г.Ф., Белозор А.Л., Гарбарук Г.К. Научный руководитель – Киркор А.В., к.т.н., доцент, Могилевский государственный университет продовольствия г. Могилев, Республика Беларусь

В настоящее время в спиртовой промышленности наметилась устойчивая тенденция в интенсификации процессов получения продуктов разделения бродильных субстратов состоящая в замене одной или двух тарельчатых царг колонны на царги заполненные насадкой.

При разработке конструкции и расчете высоты таких царг необходимы данные об условиях взаимодействия фаз, что полностью предопределяется типом насадки и ее геометрическими характеристиками. Кроме того необходимо точное знание и величины гидравлического сопротивления слоя насадки т.к. перепад давления по высоте колонны оказывает влияние на температуры кипения и конденсации компонентов, участвующих в процессе массообмена а также на состав фаз получаемого дистиллята и кубового остатка.

Одним из перспективных видов нерегулярной насадки применяемой в массообменных аппаратах может стать насадка получаемая из витых элементов в виде коротких пружин (с соотношением длины к диаметру в пределах 1,5-2,5), либо из пружинных полотен.* Для такой насадки пока отсутствуют данные по ее геометрическим характеристикам: порозности, удельной межфазной поверхности, эквивалентному диаметру и коэффициенту плотности упаковки.

Исследованию подверглась нерегулярная насадка в виде коротких пружин длиною $l=8\,$ мм, свитых из проволоки диаметром $d=0,4\,$ мм. Диаметр элементов составлял соответственно $D=4\,$ и $5,5\,$ мм. Исследования проводились пикнометрическим методом. Результаты исследований представлены в таблице 1, а в таблице 2 приведены результаты обработки полученных данных.

Таблица 1- Результаты пикнометрических исследований нерегулярной насадки

Тип элемента	Объем слоя, см ³		Число элементов в
$D \times l \times d$, mm	Полный, V_C	Свободный, V_Π	слое N, шт
5,5×8,0×0,4	65,0	57,0	240
4,0×8,0×0,4	44,0	37,58	230

Таблица 2- Геометрические характеристики насадки

тиолици 2 т сометри теские хириктеристики писидки							
Тип элемента $D \times l \times d$, мм	Порозность слоя ε	Эквивалентны й диаметр d_3 , мм	Удельная поверхность а, м ² /м ³	Удельный вес γ , H/m^3			
5,5×8,0×0,4	0,876	6,6	533,5	5877			
4,0×8,0×0,4	0,876	5,2	656,9	8368			
10×10×0,5	0,88	7,0	500	9417			

Как следует из данных таблицы 2, исследованная насадка по сравнению с известными металлическими кольцами Рашига 10x10x0,5 при более развитой удельной поверхности обладает примерно одинаковой порозностью при меньшем удельном весе. Это объясняется тем, что она обладает низким гидравлическим сопротивлением и малой удерживающей способностью, достаточно значительной удельной межфазной поверхностью.