

расширяет профессиональные знания студентов, закрепляет теоретическое обучение, повышает адаптируемость выпускников на местах работы, вызывает интерес к профессии.

Каждая из практик ставит свои цели и задачи. Речь пойдет об особенностях организации технологической и преддипломной практик, которые предназначены не только для ознакомления и изучения производства, но и со сбором материалов для выполнения соответственно курсовых и дипломных проектов. Из сложившегося многолетнего опыта работы кафедры химической технологии высокомолекулярных соединений (ХТВМС) МГУП темы курсовых и дипломных проектов по специальности 1-48 01 02 «Химическая технология веществ, материалов и изделий» предусматривают реконструкцию, техническое перевооружение существующих производств, что требует от студентов не повторять прошлые или сегодняшние технические решения, а видеть перспективы развития предприятия. В свою очередь это приводит к определенным сложностям при прохождении практик - необходимости оценки технологических и трудностей на производстве (выявлению «узких» мест), глубокому ознакомлению с планами предприятия, с предложениями ведущих мировых фирм. Безусловно, такая задача не по силам самому студенту, учитывая при этом короткие сроки практик. Поэтому, на наш взгляд, требуется тщательная предварительная проработка вопроса руководителями курсовых и дипломных проектов совместно с ведущими специалистами предприятий и выдача студентам конкретных заданий на курсовые и дипломные проекты перед отправлением студентов на практики. Эти задания могут корректироваться и меняться в процессе ознакомления с производством, могут возникать новые собственные идеи или появляться новые материалы научных разработок, предложений мировых производителей. Но первоначальные задачи с подробной их аргументацией необходимы.

Технологическая и преддипломные практики включают также выполнение индивидуальных заданий, которые иногда превращаются в подробное описание какой-либо стадии технологического процесса. А здесь может быть широкое поле для реализации творчества студентов. Индивидуальное задание должно работать на тему курсового (дипломного) проекта и может быть выполнено в различных вариантах:

- статистического анализа стабильности параметров работы оборудования, показателей продукции на отдельных технологических стадиях с анализом возможных отклонений;
- изучения зависимости показателей качества продукции от отдельных факторов производства;
 - проведения исследований в лабораториях заводов или МГУП;
- участия в научно-производственных семинарах, конференциях и пр., проводимых на предприятиях;
- создания видеофильма о технологической стадии на современном оборудовании или о проведении определенных анализов и пр.;
 - в варианте деловой игры.

Анализ реальных технологических ситуаций является важным методическим приемом, позволяющим активизировать процесс развития у студентов творческого мышления при решении технологических задач.

Деловая игра может представлять разработку студентом (или группой студентов) совместно с руководителем перечня факторов, которые влияют на определенный показатель свойств продукта.

Например: При производстве полиэфирного волокна 0,33 текса снизилась сортность волокна из-за увеличения количества «склеек». Необходимо: а) проанализировать проблему с привлечением специалистов производства и имеющихся по этой проблеме литературных данных, б) разработать мероприятия по ликвидации причин ухудшения качества.

Основываясь на знаниях технологического процесса, выявляются факторы, которые могут оказать вляние на показатель «склейки», и составляется анкета-опрос для заполнения

специалистами производства. Анализ результатов анкетного опроса методом ранговой корреляции дает возможность выделить наиболее значимые факторы. Примерная анкета-опрос представлена в таблице 1.

Таблица 1 –Влияние параметров технологического процесса получения полиэфирного волокна на показатель «склейки»

Индекс фактора	Фактор	Единица измерения	Пределы		
X_1	Удельная вязкость полимера	ед.	0,65-0,67		
X_2	Количество катализатора	%	0,02-0,04		
X_3	Количество стабилизатора	%	0,03-0,04		
X_4	Температура экструзии	°C	290-305		
X_5	Расход воздуха на обдув нити	м ³ /час	250-300		
X_6	Скорость приема нити	м/мин	800		
X_7	Температура воздуха в цехе	°C	21-27		
X_8	Влажность воздуха в отделении	воздуха в отделении %			
A 8	намотки	/0	60-65		
X_9	Концентрация замасливателя	%	2,8-3,2		
X_{10}	Температура замасливателя	°C	18-25		
X ₁₁	Кратность вытягивания		3,8-4,3		
X_{12}	Давление пара в вытяжной	МПа	0,18-0,25		
Λ_{12}	камере	IVIIIa			
X_{13}	Давление в пресс-камере	МПа	0,5-1,0		
A ₁₃	гофрировочной машины	IVIIIa			
X_{14}	Усилие прижимных роликов	мН	9,8-10,8		
A14	гофрировочной машины	IVIII	9,0-10,0		
X ₁₅	Температура термофиксации	°C	105-135		
X ₁₆	Время термофиксации	мин	17-19		

Метод ранговой корреляции факторов предполагает последовательное их расположение в порядке уменьшения степени влияния на изучаемый параметр. Составленная анкета предлагается для заполнения экспертам-специалистам (технологам производства), которые проставляют напротив каждого фактора соответствующий ранг-цифру. Эксперт может включить в анкету дополнительные факторы. При одинаковом влиянии факторов ранг может быть дробным. Ответы экспертов сводятся в таблицу (таблица 2).

Таблица 2 – Матрица рангов, a_{ii} , факторов, Xi, влияющих на образование «склеек»

Факторы	Ранги факторов, а _{іј} , экспертов									Σa_{ij}	
Фа	I	II	III	IV	V	VI	VII	VIII	IX	X	
X_1	8	13	1	3	7	9,5	12	14	6,5	4	78
X_2	12,5	15	10,5	12	13,5	12	11	11	10	9	116,5
X ₃	12,5	16	10,5	11	16	13	13	12	11	12	127

X_4	7	5,5	7,5	10	15	9,5	10	13	12	10	99,5
X ₅	4	5,5	7,5	4,5	5	6	5	6	6,5	8	58
X_6	14	14	12	14	11	16	14	16	13	11	135
X ₇	5,5	7	7,5	4,5	4	5	6	5	9	1	54,5
X_8	5,5	1	5	2	2,5	4	3,5	1,5	2,5	5	32,5
X ₉	15	9,5	14	13	13,5	9,5	9	15	14	13	125,5
X_{10}	16	9,5	7,5	8	12	7	7,5	8	5	6,5	87
X ₁₁	9	8	13	9	8	9,5	7,5	7	8	14	93
X ₁₂	3	2	2,5	6	6	3	2	3,5	2,5	6,5	37
X ₁₃	2	4	2,5	1	2,5	1	3,5	3,5	2,5	2	24,5
X ₁₄	1	3	4	7	1	2	1	1,5	2,5	3	26
X ₁₅	10,5	12	15	16	9,5	14	15	9	15	16	132
X ₁₆	10,5	11	16	15	9,5	15	16	10	16	15	134
		I.	l .		l .	I.	I.		l .		

Проводится статистическая обработка данных с оценкой коэффициента корреляции, критерия согласия, коэффициента распределения мнений экспертов, построения гистограммы рангов. В приведенном примере результаты анализа свидетельствуют, что наибольшее влияние на возможность образования склеек оказывают следующие факторы: X_{13} —давление в пресс-камере, X_{14} — усилие прижима роликов гофрировочной машины, X_{8} — влажность воздуха в отделении намотки, X_{12} —давление пара в вытяжной камере, X_{7} — температура воздуха в цехе, X_{5} — расход воздуха на обдув нити, X_{1-} удельная вязкость полимера. Остальные факторы оказывают меньшее влияние по мнению экспертов, а факторы X_{2} , X_{3} (количество катализатора и стабилизатора), X_{6} (скорость приема нити), X_{15} и X_{16} (параметры термофиксации)можно отнести к шумам.

Проходя практику, студенты могут сами предлагать темы индивидуальных заданий или корректировать полученные и прописанные в дневнике, но с согласия руководителя проекта.

Еще один аспект, который хотелось бы отметить при организации практик и который не является обязательным, — это проведение конференций со студентами, руководителями практик от университета и, при возможности, от предприятий, а также с руководителями проектов после защит практик. На конференциях должны оглашаться результаты практик с разбором недостатков, должны выслушиваться мнения всех сторон, вырабатываться пути совершенствования организации и проведения практик.

К сожалению, ушли в прошлое времена, когда на практику было отведено 2-3 месяца учебного времени, за которое студенты могли дополнительно научиться работать на отдельном оборудовании и получить рабочий разряд. Такая связь с производством обеспечивала и глубину знаний, и легкое «вхождение» молодых специалистов в производство по окончанию вуза. Учитывая сжатые сроки современных практик, от преподавателей вуза требуется очень четкая разработка программ пребывания студентов на производствах, постоянный контроль и помощь студентам, тесная связь со специалистами

предприятий. Этим требованиям уже многие годы следует кафедра ХТВМС, постоянно используя новые приемы и совершенствуя старые.