ИСПОЛЬЗОВАНИЕ ТЕХНОЛОГИИ ПРОЕКТНОГО ОБУЧЕНИЯ ПРИ ОРГАНИЗАЦИИ УПРАВЛЯЕМОЙ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ ПО ДИСЦИПЛИНАМ ХИМИЧЕСКОГО ПРОФИЛЯ

Н.В. Картель

Могилевский государственный университет продовольствия, г. Могилев, Республика Беларусь

На современном этапе развития высшего образования одной из основных задач является обеспечение гибкости и вариативности содержания образовательных программ в соответствии с меняющимися потребностями рынка труда, инновационным развитием экономики.

Решение данной задачи неразрывно связано с поиском новых эффективных форм организации самостоятельной работы студентов, в том числе с использованием активных и интерактивных методов обучения, позволяющих создать среду образовательного общения, развить творческие способности студентов, повысить их стремление к непрерывному приобретению знаний.

Технологию проектного обучения, в основе которой лежит концепция развивающего обучения, можно рассматривать в качестве одной из оптимальных форм организации управляемой самостоятельной работы студентов (далее – УСРС).

Учебной программой дисциплины «Химия» для специальности 1-25 01 09 «Товароведение и экспертиза товаров» предусмотрено 16 часов УСРС, учебной программой дисциплины «Органическая химия» для специальности 1-33 01 07 «Природоохранная деятельность (по направлениям)» – 14 часов УСРС.

УСРС охватывает наиболее важные темы дисциплин, по которым требуется дополнительно проработать и проанализировать рассматриваемый материал.

По дисциплине «Химия» для специальности «Товароведение и экспертиза товаров» разработана модель организации управляемой самостоятельной работы студентов, которая направлена на поэтапное развитие у студентов знаний, умений и навыков, направленных на самостоятельное, творческое решение учебных задач.

В первом семестре преподавания дисциплины (раздел «Общая химия») превалируют задания, направленные на овладение новыми знаниями (работа над учебным материалом, конспектирование, подготовка небольших сообщений) и формирование новых умений (решение вариативных задач). Задания, направленные на систематизацию знаний, используются в меньшей степени, в основном, для хорошо успевающих студентов (составление плана ответа, тезисов ответа, реферирование текста). Контроль УСРС осуществляется как на лабораторных занятиях, так и на трех коллоквиумах, предусмотренных учебной программой.

Во втором семестре преподавания дисциплины (раздел «Органическая химия») помимо заданий, направленных на освоение новых знаний и умений, используются задания, направленные на систематизацию знаний (разработка тестовых заданий, аналитическая обработка текста) и развитие исследовательских навыков (подготовка докладов к выступлению на исследовательском семинаре). УСРС направлена на углубление знаний в области строения, структуры, физических и химических свойств органических соединений, входящих в состав продовольственного сырья и пищевых продуктов. Контроль УСРС осуществляется на лабораторных занятиях, на трех коллоквиумах, предусмотренных учебной программой, и на учебно-исследовательском семинаре в конце семестра.

По дисциплине «Органическая химия» для специальности «Природоохранная деятельность (по направлениям)» предусмотрены различные виды заданий, направленные как на освоение новых знаний и умений, так и на систематизацию знаний, развитие исследовательских навыков. УСРС направлена на углубление знаний в области строения, структуры, физических и химических свойств органических соединений, как входящих в

состав продовольственного сырья и пищевых продуктов, так и оказывающих отрицательное воздействие на окружающую среду. Контроль УСРС осуществляется на лабораторных занятиях, на трех коллоквиумах, предусмотренных учебной программой, и на учебно-исследовательском семинаре в конце семестра.

Студент, не выполнивший задания по обязательной части УСРС (контролируемые на коллоквиумах, предусмотренных учебной программой), считается не выполнившим требования учебной программы по учебной дисциплине и не допускается к экзамену по данной дисциплине.

Результаты контроля УСРС учитываются как составная часть оценки при проведении экзаменов по дисциплинам «Химия» и «Органическая химия» в рамках рейтинговой системы оценки знаний студентов по учебной дисциплине.

Исследовательский семинар проводится по итогам семестровой УСР в рамках последних занятий в семестре. Тематика семинаров зависит от специфики специальности: «Экологические аспекты химии органических соединений» для специальности 1-33 01 07 Природоохранная деятельность (по направлениям); «Органические вещества в пищевых системах» для специальности 1-25 01 09 Товароведение и экспертиза товаров.

На исследовательском семинаре заслушиваются доклады по предложенной тематике и отчеты по творческой работе студентов.

Творческие задания относятся к необязательной части управляемой самостоятельной работы и предлагаются для выполнения только студентам с высоким уровнем подготовки по дисциплинам химического профиля.

Творческое задание представляет собой учебный проект, разрабатываемый по определенной теме, предусматривающей либо более глубокое освоение тематики дисциплины, либо не входящей в лекционный курс, но тесно связанной с освоенным учебным материалом, последующими специальными дисциплинами и сферой будущей профессиональной деятельности.

Тематика проекта должна быть значимой для профессионального становления и творческой самореализации студентов. Примерные тематики творческих заданий следующие: азотсодержащие вещества и их химические превращения в пищевых системах; липиды и их химические превращения в пищевых системах; аминокарбонильные реакции в пищевых системах; химические основы вкуса, аромата и цвета пищевых продуктов; природные пигменты и синтетические красители в пищевых системах; эмульсии и эмульгаторы в пищевых системах и др.

Выполнение творческих заданий – это первая научная деятельность студентов, в ходе которой проводится, в соответствии с выбранной темой:

- поиск информации о химических свойствах, способах получения, применении веществ (самостоятельно, при консультировании преподавателем);
- выявление закономерностей изменения свойств химических объектов (вещество, реакция);
 - анализ наличия информации о химических объектах в доступных источниках,
 - выявление и сопоставление противоречивых сведений;
- оформление текстового варианта отчета по теме с применением редактора химических формул Chemsketch;
 - оформление презентации по теме;
 - презентация отчета по теме на исследовательском семинаре.

Творческие задания могут выполняться как индивидуально, так и в группе из двух человек.

Студенты, не обладающие компетенциями, необходимыми для выполнения творческих заданий, выступают с кратким докладом (3-5 минут) по тематике, включенной в учебные программы дисциплин «Химия», «Органическая химия».

Примерная тематика докладов для студентов специальности «Товароведение и экспертиза товаров»: Роль аминокислот в обмене веществ и пищевой технологии; Продукты

питания как источник незаменимых аминокислот; Физиологическая роль отдельных аминокислот (аргинин, глутамин, глутаминовая кислота, глицин, лизин, цистеин, серин, метионин); Дефицит белка в пищевых продуктах и его преодоление в рамках глобальной продовольственной программы; Синтетические и искусственные пищевые продукты; Физиологическая роль и роль в пищевой технологии фосфолипидов (стеролов, стеридов) пищевых продуктов; Воски как сырье для пищевой промышленности; Токсичность продуктов окисления жирных кислот; Физиологическая роль и роль в пищевой технологии моносахаридов (ди- и трисахаридов, полисахаридов) пищевых продуктов; Фенольные соединения, гликозиды и ароматические вещества плодоовощных товаров и др.

Дополнительно К вышеуказанной студентов тематике ДЛЯ «Природоохранная деятельность (по направлениям)» предлагается тематика докладов, связанная с экологическими аспектами химии органических соединений: Экологические аспекты использования углеводородного сырья; Метанол: хемофилия и хемофобия; Этанол: величайшее благо и страшное зло; Формальдегид; Синтетические моющие средства; Умеренные токсиканты органической природы: ацетонитрил, диоксан, дихлорэтан; Малоопасные токсиканты органической природы: бензин, ацетон; Диоксины диоксиноподобные вещества. Токсические и физико-химические свойства; Полициклические ароматические углеводороды (бензол, бензопирен и др.). Канцерогенные свойства; Хлорорганические соединения: поливинилхлорид, полихлорированные гексахлорциклогексан, гексахлорбензол, метоксихлор, пентахлорфенол, тетрахлорфенол и тетрахлорэтилен; Фосфорорганические пестициды (инсектициды); Фенол и его производные и др.

Использование в образовательном процессе технологии проектного обучения позволяет расширить содержательную составляющую учебных дисциплин, сформировать творческую индивидуальность и профессиональную компетентность обучающихся, повысить их заинтересованность в результатах обучения.