МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ КОМБИНИРОВАННОГО ПРОЦЕССА СУШКИ И КЛАССИФИКАЦИИ РАСТИТЕЛЬНОГО СЫРЬЯ В РОТОРНОМ АППАРАТЕ

Никитин И.Н., Готовчиков М.А. Научный руководитель – Киркор М.А., к.т.н., доцент Могилевский государственный университет продовольствия г. Могилев, Беларусь

Процесс классификации порошкового растительного сырья в роторных аппаратах основан на условии динамического равновесия частиц граничного размера в радиальном направлении рабочего органа. В первом приближении данное условие выражается в компенсации силы аэродинамического сопротивления F_c силой инерции от нормального ускорения Φ_{ue} для частицы граничного размера (1) [1]:

$$\left|F_{c}\right| = \left|\Phi_{ue}\right| \dots \tag{1}$$

Сила инерции нормального ускорения зависит от массы частицы m, диаметра ротора D и угловой скорости его вращения ω (2) [1]:

$$\Phi_{\nu\omega} = 0.25m \,\omega^2 D. \tag{2}$$

При моделировании процесса классификации мелкодисперсных порошков имеет место допущение, согласно которому масса частицы остается постоянной в течение всего процесса. В то же время для порошков растительного происхождения масса частицы слагается из массы сухого вещества и массы несвязанной влаги. Анализируя аппаратурное оформление процесса классификации можно прийти к выводу, что при прохождении различных зон роторного аппарата частица растительного материала испытывает значительные колебания значений давления воздушного потока. Следует также отметить, что роторные аппараты в силу своей конструкции работают под разряжением. Оба эти фактора могут вызвать интенсификацию отвода влаги из частицы продукта. Опираясь на данную гипотезу, можно прийти к выводу, что возможно комбинирование процесса классификации и сушки в роторном аппарате. Комбинирование двух процессов может быть реализовано путем подачи в аппарат сушильного агента с кондиционными параметрами температуры и влагосодержания.

Для математического анализа комбинированного процесса следует допустить отказ от инвариантного представления массы частицы, т.е. учесть ее изменение во времени t. В данном случае уравнение (1) с учетом уравнения (2) примет вид (3):

$$F_c = 0.25\omega_e^2 D \frac{dm}{dt}.$$
 (3)

Очевидно, что параметр dm/dt в уравнении (1.3) напрямую зависит от кинетики сушки. Стоит отметить, что при сушке частицы будет также меняться и сила ее аэродинамического сопротивления, однако необходимо экспериментально определить значимость изменения данного параметра, после чего станет возможным дальнейшее развитие математической модели комбинированного процесса.

Литература

1. Киркор, М.А. Исследование движения частицы по поверхности ротора классификатора / М.А. Киркор, Р.А. Бондарев, В.И. Никулин // Вестник МГУП. – 2015. – N1(18). – С. 98 – 104.