ВЛИЯНИЕ ГИДРОМОДУЛЯ НА ПОКАЗАТЕЛИ КАЧЕСТВА МЯСНЫХ ФАРШЕВЫХ СИСТЕМ С ИСПОЛЬЗОВАНИЕМ МУКИ ИЗ ЖМЫХА ЛЬНЯНОГО

Василенко З.В., Омарова Э. М., Кучерова Е.Н., Бычко А.В. Белорусский государственный университет пищевых и химических технологий г. Могилев, Беларусь

Исследование технологических свойств муки из жмыха льняного показало, что она обладает высокой водосвязывающей (ВСС), водоудерживающей (ВУС) и жироудерживающей способностью (ЖУС) [1]. Для того, чтобы мука в полной мере проявила свои технологические свойства, ее необходимо было предварительно гидратировать. Чтобы мясная система с мукой из жмыха льняного имела требуемую консистенцию, необходимо было определить оптимальное соотношение муки и воды, т.е. гидромодуль. Для этого к муке из жмыха льняного добавляли воду комнатной температуры, перемешивали и оставляли на 15 мин, после чего соединяли с мясной фаршевой системой.

Качество определяли исходя из технологических свойств [2, 3] фаршевых систем. Результаты исследований представлены в таблице 1.

Таблица 1 – Технологические свойства фаршевых систем в зависимости от

гидромодуля

Гидромодуль	Общая массовая	Количество связанной влаги		BBC, %	ВУС, %
(соотношение	доля влаги, %	к массе	к общей влаге		
мука : вода)		образца (B ₁), %	$(B_2), \%$		
1:1	66,82	61,94	99,99	0,5	66,32
1:2	69,82	60,13	99,88	1,5	68,32
1:3	71,59	59,55	99,18	2,0	69,59
1:4	73,95	56,65	94,14	4,0	69,95
1:5	77,14	51,80	89,16	7,0	70,14
1:6	77,38	50,79	86,84	9,0	68,38

Из данных, представленных в таблице 1, видно, что наибольшей массовой долей влаги обладает образец мясной системы с гидромодулем 1 : 6 и составляет 77,38 %, а наименьшей – образец мясной системы с гидромодулем 1 : 1 и составляет 66,82 %.

Содержание связанной влаги к массе мяса с увеличением гидромодуля незначительно снижается от 61,94 % до 50,79 % соответственно. Содержание связанной влаги к общей влаге с увеличением гидромолуля от 1:1 до 1:6 также снижается от 99,99 % до 86,84 % соответственно.

С увеличением гидромодуля ВВС увеличивается. Наибольшая ВВС наблюдается образец с гидромодулем 1:6, которая составляет 9,0 %, а наименьшая — у образца мясной системы с гидромодулем 1 : 1 и составляет 0,5 %. ВВС и ВУС находятся в прямо пропорциональной зависимости. Однако, с использованием образца мясной системы 1:6 ВУС снижается, за счет большего количества выделившейся влаги при тепловой обработке (9,0%).

С увеличением гидромодуля от 1:1 до 1:5 ВУС увеличивается от 66,32% до 70,14% соответственно. Наименьшей ВУС характеризуется образец с гидромодулем 1:1(66,32%).

Образцы мясной системы с гидромодулем 1 : 3 и 1 : 4 обладают практически одинаковой ВУС, отличающиеся между собой на 0,36 %.

В связи с этим представлял интерес охарактеризовать мясные фаршевые системы по органолептическим показателям качества в зависимости от гидромодуля мука: вода, результаты исследований представлены в таблице 2.

Таблица 2 – Характеристика органолептических показателей качества

фаршевых систем в зависимости от гидромодуля

Гидромодуль	Характеристика органолептических показателей качества				
мука : вода	фаршевых систем				
1:1	Гидратированная мука неравномерно распределена в				
1:2	фаршевой системе из-за недостатка воды				
1:3	Гидратированная мука равномерно распределена в				
	фаршевой системе				
1:4	Гидратированная мука равномерно распределена в фаршевой				
	системе, наблюдалось незначительное выделение слизистых				
	веществ, содержащихся в жмыхе льняном.				
1:5	Гидратированная мука равномерно распределена в фаршевой				
	системе, наблюдалось заметное выделение слизистых				
	веществ, содержащихся в жмыхе льняном, происходило				
1:6	чрезмерное разбавление фарша				

Из представленных в таблице 2 данных следует, что при соединении муки и воды в соотношении 1:1 и 1:2 гидратированная мука неравномерно распределяется в фаршевой системе. При использовании гидромодуля 1:4 гидратированная мука равномерно распределяется в фаршевой системе, однако при этом, происходит незначительное выделение слизистых веществ, содержащихся в жмыхе льняном. При использовании соотношения мука: вода 1:5 и 1:6 кроме выделения слизистых веществ, содержащихся в жмыхе льняном, еще происходит и чрезмерное разжижение фарша, что может в дальнейшем привести к отделению влаги при тепловой обработке колбасы. Лучшими органолептическими показателями качества характеризовалась фаршевая система с соотношением мука: вода 1:3, так как гидратированная мука равномерно распределялась в фаршевой системе и не происходило выделения слизистых веществ.

При превышении гидромодуля свыше 1:3 происходит чрезмерное разжижение фарша, что может сказаться на снижении всех функционально – технологических показателей мясных систем. Поэтому в качестве оптимального гидромодуля был выбран 1:3.

Список использованных источников

- 1 Василенко, З.В. Жмых льняной перспективная добавка для производства мясных изделий функционального назначения / З. В. Василенко, Е. Н. Кучерова // Проблемы биологической безопасности жизнедеятельности в современном мире: вызовы, состояние и перспективы : сб. докладов XIV Международного биотехнологического форума «РОСБИОТЕХ-2020». Москва. 17-19 ноября 2020 г. С. 96–100.
- 2 Гурова, Н. В. Методы определения функциональных свойств соевых белковых препаратов / Н. В. Гурова, И. А. Попелло, В. В. Сучков // Мясная индустрия, 2001. №9. С. 30–32.