ИЗУЧЕНИЕ ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ СВЧ-СУШКИ ПРИ ПРОИЗВОДСТВЕ КРУП ПОВЫШЕННОЙ ПИТАТЕЛЬНОЙ ЦЕННОСТИ

Цедик О.Д., Пачковская К.А. Могилевский государственный университет продовольствия г. Могилев, Беларусь

В настоящее время в связи с изменением структуры питания населения актуален вопрос создания новых продуктов с повышенной биологической и физиологической ценностью, наличием функциональных ингредиентов в продуктах питания, а также позволяющих экономить время. Такими продуктами являются крупяные продукты быстрого приготовления, в частности крупы повышенной питательной ценности, которые представляют собой быстроразваривающиеся прессованные изделия, по форме и размерам имитирующие натуральные крупы. Они предназначены для массового потребления и могут быть использованы для приготовления широкого ассортимента блюд, а также для специализированного питания.

С целью расширения ассортимента крупяной продукции нами была предпринята попытка разработки рецептуры многокомпонентного крупяного концентрата быстрого приготовления на основе зернового сырья с повышенным содержанием белка. В качестве ингредиентов разрабатываемого крупяного концентрата использовались: мука просяная, мука рисовая, мука кукурузная, яичный порошок, концентрат сывороточный белковый. Эти ингредиенты характеризуются высокой пищевой и биологической ценностью, кроме того, они не содержат в своем составе глютен, поэтому полученный в результате исследований крупяной пищевой концентрат может быть отнесен к продукции специализированного назначения.

Следует отметить, что употребление в пищу крупяных концентратов с повышенным содержанием белка позволит восполнять затраты мышечного белка у тех людей, которые ведут активный образ жизни и занимаются спортом.

Технология получения крупяных концентратов характеризуется такими технологическими процессами, как смешивание ингредиентов, прессование и сушка. Для сушки готовой продукции традиционно используется аэровибрационная сушилка марки УСХ, время сушки в которой достаточно длительное. В связи с этим нами была предпринята попытка изучения возможности использования СВЧ-сушки при изготовлении крупяных концентратов с повышенным содержанием белка.

Достоинством микроволновой сушки является повышенная эффективность. В отличие от других способов, при микроволновой сушке не происходит передача тепла от источника тепла, как, например, при конвекционной сушке, когда первоначально обогревается воздух при помощи нагревателя, а затем уже горячий воздух передаёт тепло материалу. При этом теряется определённое количество тепловой энергии. Особенности микроволновой сушки позволяют проводить объёмный нагрев, тепло проникает в продукт не через его поверхность, а сразу появляется во всём его объёме, то есть вся энергия, вырабатываемая при микроволновом излучении, полностью поглощается в продукте. Кроме этого, микроволновое излучение способно уничтожать вредные микроорганизмы, так как под воздействием высокой температуры микроорганизмы погибают, происходит своеобразная стерилизация продукта.

В ходе эксперимента высушивание проводили в элементарном слое в СВЧ-сушилке, которая имеет мощность 800 Ватт. Чтобы определить оптимальное время

высушивания проводили органолептическую оценку крупяного концентрата после обработки в СВЧ-сушилке при различном времени воздействия микроволновых лучей, результаты представлены в таблице.

Таблица – Результаты эксперимента

	Время нагрева, мин	Показатели качества				
№		Влажн ость, %	Вкус	Цвет	Запах	Консистенция
1	2	3	4	5	6	7
1	0,5	27,0	Молочный с горьковатым послевкусием	Светло жёлтый, светло серый	Свойственный запаху крупяного сырья	Сырая, податливая, легко разминается руками
2	1	22,4	Молочный с горьковатым послевкусием	Светло жёлтый, светло серый	Свойственный запаху крупяного сырья	Сырая
3	2	17,1	Молочный без горького послевкусия	Светло жёлтый, светло серый	Свойственный запаху крупяного сырья	Влажная
4	3	12,6	Выраженный молочный вкус	Жёлтый	Ярко выраженный, свойственный крупе	Сухая, пористая
5	4	10,0	Выраженный подгоревший молочный вкус	Темный	Запах подгоревшей крупы и молока	Сухая, пористая

Исходя из полученных данных, наилучшими показателями характеризуется образец №4, который находился под воздействием микроволнового излучения в течение 3 минут. Образец обладает хорошими органолептическими свойствами, имеет выраженный молочный вкус, цвет жёлтый, по консистенции имеет структуру высушенных круп, при этом достигнута влажность 12,6 %, которая позволит хранить продукт длительное время с заданными свойствами. Образцы №1-3 имеет высокую влажность, горьковатое послевкусие, сырую консистенцию. Образец №5 имеет свойства пересушенного продукта, вкус, запах и цвет ярко выраженного подгоревшего молока.

Таким образом, установлена возможность применения СВЧ-сушки для получения крупяных концентратов, выявлено оптимальное время высушивания, которое составило для элементарного слоя 3 минуты при мощности излучения 800 Ватт до влажности продукта не более 13%. Применение СВЧ-сушки позволило не только снизить влажность до требуемых значений, но и сократить время приготовления готового продукта за счёт биохимических изменений, происходящих при микроволновой обработке.