УДК 551.521.3

ПРИМЕНЕНИЕ ИТЕРАЦИОННОГО АЛГОРИТМА ПРИ МОДЕЛИРОВАНИИ ПОЛЕЙ РАССЕЯНИЯ ТЕХНОЛОГИЧЕСКИХ СРЕД

Цымбаревич Е.Г.

Белорусский государственный университет пищевых и химических технологий г. Могилев, Республика Беларусь

Автоматизация в пищевой промышленности предполагает возможность оперативного получения производственной и коммерческой информации, анализ и контроль параметров технологического цикла, благодаря которым достигается минимизация возможных рисков при производстве продукции.

Современные автоматизированные системы пищевых производств нацелены на тесную интеграцию в процесс управления информационных компьютерных технологий различного типа, позволяющих анализировать большие массивы данных, поступающих от датчиков, визуализировать технологический процесс, используя технологию 3d-моделирования, применять корректирующие функции в отношении параметров технологического цикла.

Важной задачей в этом направлении является разработка статистически корректных моделей технологических сред, обуславливающих эффективность обработки цифровой и аналоговой информации, поступающей от датчиков, контролирующих сам технологический процесс.

В докладе рассматривается одномерно-неоднородная стохастическая модель технологической среды, свойства которой исследуются в оптическом диапазоне и представлены полями рассеяния.

Математической основой такого рода задач является стохастическое уравнение переноса излучения:

$$LI(\vec{r}; \vec{\Omega}) = J(\vec{r}; \vec{\Omega}),$$
 (1)

где $I(\vec{r};\vec{\Omega})$ – яркость излучения в точке \vec{r} пространства в направлении $\vec{\Omega}$,

$$L = \vec{\Omega} \cdot \nabla + \varepsilon(\vec{r}) - \frac{\sigma(\vec{r})}{4\pi} \int_{4\pi} d\vec{\Omega}' g(\vec{r}; \vec{\Omega} \cdot \vec{\Omega}') (\cdot)$$
 (2)

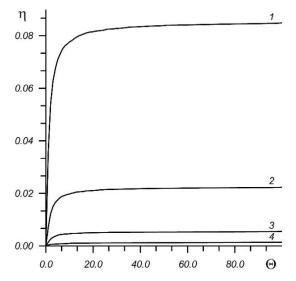
– линейный оператор, $\nabla = \vec{\iota} \, \partial/\partial x + \vec{j} \, \partial/\partial y + \vec{k} \, \partial/\partial z$ – оператор Гамильтона, $\varepsilon(\vec{r})$ – показатель ослабления света, $\sigma(\vec{r})$ – показатель рассеяния, $g(\vec{r}; \vec{\Omega} \cdot \vec{\Omega}')$ – индикатриса рассеяния, $J(\vec{r}; \vec{\Omega})$ – функция источников.

Решение уравнения (1), (2) строится в рамках итерационного алгоритма для среднего поля яркости

$$\langle L \rangle \langle I(\vec{r}; \vec{\Omega}) \rangle = J_{vir}(\vec{r}; \vec{\Omega}; n), \tag{3}$$

где $J_{vir}(\vec{r}; \vec{\Omega}; n)$ — функция внутренних виртуальных источников, n — натуральный параметр, определяющий номер приближения, угловые скобки — знак математического усреднения.

Некоторые результаты проведенного исследования представлены на рисунках 1, 2.



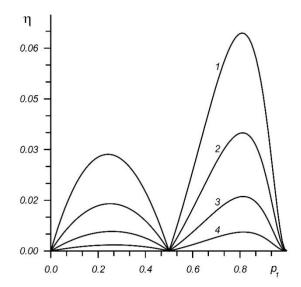


Рис.1. Зависимость величины ошибки η от масштаба флуктуаций Θ показателей ослабления для приближений n=1, 2, 3, 4 (кривые 1-4)

Рис.2. Влияние безусловной вероятности наличия оптической неоднородности p_1 на точность η приближения n=1 метода итераций

Зависимость величины ошибки η от масштаба флуктуаций θ для различных приближений n показана на рис.1. Как видно, изменение величины флуктуаций от значения $\theta=1$ до $\theta=100$ при фиксированном n оказывает заметное влияние на точность метода. Как и следовало ожидать, наиболее чувствительными к изменению θ оказываются приближения более низких порядков.

Результаты расчетов, представленных на рис.2, демонстрируют зависимость величины η от вероятности p_1 наличия неоднородности в приближении n=1. Анализ рисунка показывает, что точность метода итераций очень сильно зависит от вероятности p_1 и, в конечном счете, от концентрации оптических неоднородностей в объеме рассеивающего слоя.

Анализ данных, представленных на рисунках, позволяет заключить, что применение итерационного алгоритма при моделировании полей рассеяния технологических сред обеспечивает достаточно хорошую точность результатов и в области крупномасштабных флуктуаций $\theta >> 1$ параметров рассеяния. Этим обстоятельством итерационный метод принципиально отличается от классической теории возмущений, справедливой только в области слабых флуктуаций ($|1-\theta|\approx 1$).